Követés
Sébastien Ehrhardt
Sébastien Ehrhardt
E-mail megerősítve itt: robots.ox.ac.uk
Cím
Hivatkozott rá
Hivatkozott rá
Év
Automatically discovering and learning new visual categories with ranking statistics
K Han, SA Rebuffi, S Ehrhardt, A Vedaldi, A Zisserman
arXiv preprint arXiv:2002.05714, 2020
2262020
Autonovel: Automatically discovering and learning novel visual categories
K Han, SA Rebuffi, S Ehrhardt, A Vedaldi, A Zisserman
IEEE Transactions on Pattern Analysis and Machine Intelligence 44 (10), 6767 …, 2021
1362021
3d multi-bodies: Fitting sets of plausible 3d human models to ambiguous image data
B Biggs, D Novotny, S Ehrhardt, H Joo, B Graham, A Vedaldi
Advances in neural information processing systems 33, 20496-20507, 2020
842020
Co-attention for conditioned image matching
O Wiles, S Ehrhardt, A Zisserman
Proceedings of the IEEE/CVF conference on computer vision and pattern …, 2021
64*2021
RELATE: Physically Plausible Multi-Object Scene Synthesis Using Structured Latent Spaces
S Ehrhardt, O Groth, A Monszpart, M Engelcke, I Posner, N Mitra, ...
Advances in Neural Information Processing Systems 33, 2020
582020
Semi-supervised learning with scarce annotations
SA Rebuffi, S Ehrhardt, K Han, A Vedaldi, A Zisserman
Proceedings of the IEEE/CVF conference on computer vision and pattern …, 2020
582020
Learning a physical long-term predictor
S Ehrhardt, A Monszpart, NJ Mitra, A Vedaldi
arXiv preprint arXiv:1703.00247, 2017
542017
Unsupervised intuitive physics from visual observations
S Ehrhardt, A Monszpart, N Mitra, A Vedaldi
Asian Conference on Computer Vision, 700-716, 2018
292018
Lsd-c: Linearly separable deep clusters
SA Rebuffi, S Ehrhardt, K Han, A Vedaldi, A Zisserman
Proceedings of the IEEE/CVF international conference on computer vision …, 2021
282021
Taking visual motion prediction to new heightfields
S Ehrhardt, A Monszpart, NJ Mitra, A Vedaldi
Computer Vision and Image Understanding 181, 14-25, 2019
222019
Small steps and giant leaps: Minimal newton solvers for deep learning
JF Henriques, S Ehrhardt, S Albanie, A Vedaldi
Proceedings of the IEEE/CVF International Conference on Computer Vision …, 2019
212019
Learning to represent mechanics via long-term extrapolation and interpolation
S Ehrhardt, A Monszpart, A Vedaldi, N Mitra
arXiv preprint arXiv:1706.02179, 2017
112017
Unsupervised intuitive physics from past experiences
S Ehrhardt, A Monszpart, NJ Mitra, A Vedaldi
arXiv preprint arXiv:1905.10793, 2019
62019
Stopping gan violence: Generative unadversarial networks
S Albanie, S Ehrhardt, JF Henriques
arXiv preprint arXiv:1703.02528, 2017
62017
Deep industrial espionage
S Albanie, J Thewlis, S Ehrhardt, J Henriques
arXiv preprint arXiv:1904.01114, 2019
32019
Learning visual concepts with fewer human annotations
S Ehrhardt
University of Oxford, 2020
2020
LSD-C: Linearly Separable Deep Clusters–Supplementary Material–
SA Rebuffi, S Ehrhardt, K Han, A Vedaldi, A Zisserman
How does mini-batching affect curvature information for second order deep learning optimization?
D Granziol, X Wan, S Zohren, S Roberts, T Garipov, D Vetrov, AG Wilson, ...
A rendszer jelenleg nem tudja elvégezni a műveletet. Próbálkozzon újra később.
Cikkek 1–18