Variational dropout sparsifies deep neural networks D Molchanov, A Ashukha, D Vetrov International conference on machine learning, 2498-2507, 2017 | 1046 | 2017 |
Pitfalls of in-domain uncertainty estimation and ensembling in deep learning A Ashukha, A Lyzhov, D Molchanov, D Vetrov arXiv preprint arXiv:2002.06470, 2020 | 353 | 2020 |
Structured bayesian pruning via log-normal multiplicative noise K Neklyudov, D Molchanov, A Ashukha, DP Vetrov Advances in Neural Information Processing Systems 30, 2017 | 233 | 2017 |
Greedy policy search: A simple baseline for learnable test-time augmentation A Lyzhov, Y Molchanova, A Ashukha, D Molchanov, D Vetrov Conference on uncertainty in artificial intelligence, 1308-1317, 2020 | 74 | 2020 |
Uncertainty estimation via stochastic batch normalization A Atanov, A Ashukha, D Molchanov, K Neklyudov, D Vetrov Advances in Neural Networks–ISNN 2019: 16th International Symposium on …, 2019 | 61 | 2019 |
Doubly semi-implicit variational inference D Molchanov, V Kharitonov, A Sobolev, D Vetrov The 22nd International Conference on Artificial Intelligence and Statistics …, 2019 | 54 | 2019 |
Variance networks: When expectation does not meet your expectations K Neklyudov, D Molchanov, A Ashukha, D Vetrov arXiv preprint arXiv:1803.03764, 2018 | 33 | 2018 |
Bayesian incremental learning for deep neural networks M Kochurov, T Garipov, D Podoprikhin, D Molchanov, A Ashukha, ... arXiv preprint arXiv:1802.07329, 2018 | 22 | 2018 |
Variational dropout via empirical bayes V Kharitonov, D Molchanov, D Vetrov arXiv preprint arXiv:1811.00596, 5, 2018 | 15 | 2018 |
Star-shaped denoising diffusion probabilistic models A Okhotin, D Molchanov, A Vladimir, G Bartosh, V Ohanesian, A Alanov, ... Advances in Neural Information Processing Systems 36, 2024 | 7 | 2024 |
Dropout-based automatic relevance determination D Molchanov, A Ashuha, D Vetrov Bayesian Deep Learning workshop, NIPS, 2016 | 3 | 2016 |
Relevance tagging machine DA Molchanov, DA Kondrashkin, DP Vetrov Machine Learning and Data Analysis 1 (13), 1877-1887, 2015 | 1 | 2015 |
TEncDM: Understanding the Properties of Diffusion Model in the Space of Language Model Encodings A Shabalin, V Meshchaninov, T Badmaev, D Molchanov, G Bartosh, ... arXiv preprint arXiv:2402.19097, 2024 | | 2024 |
Reintroducing Straight-Through Estimators as Principled Methods for Stochastic Binary Networks V Yanush, A Shekhovtsov, D Molchanov, D Vetrov arXiv e-prints, arXiv: 2006.06880, 2020 | | 2020 |
Probabilistic Models A Okhotin, D Molchanov, V Arkhipkin, D Vetrov KI 2024: Advances in Artificial Intelligence: 47th German Conference on AI …, 0 | | |
Structured Semi-Implicit Variational Inference I Molchanova, D Molchanov, N Quadrianto, D Vetrov Second Symposium on Advances in Approximate Bayesian Inference, 0 | | |