Number systems in real quadratic fields G Farkas Ann. Univ. Sci. Budapest. Sect. Comput 18, 47-59, 1999 | 19 | 1999 |
Computational investigation of Lehmer’s totient problem P Burcsi, S Czirbusz, G Farkas Ann. Univ. Sci. Budapest. Sect. Comput 35, 43-49, 2011 | 15 | 2011 |
Report on the largest known Sophie Germain and twin primes T Csajbók, G Farkas, A Járai, Z Járai, J Kasza Annales Univ. Sci. Budapest, Sect. Comp 26, 181-183, 2006 | 15 | 2006 |
Exact solution for a two-type customers retrial system P Kárász, G Farkas Computers & Mathematics with Applications 49 (1), 95-102, 2005 | 12 | 2005 |
Report on the largest known twin primes T Csajbók, G Farkas, A Járai, Z Járai, J Kasza Annales Univ. Sci. Budapest, Sect. Comp 25, 247-248, 2005 | 11 | 2005 |
Investigation of a continuous cyclic-waiting problem by simulation G Farkas Annales Univ. Sci. Budapest., Sect. Comp 19, 225-235, 2000 | 11 | 2000 |
Investigation of a discrete cyclic-waiting problem by simulation G Farkas, P Kárász Acta Academiae Paedagogicae Agriensis, Sectio Mathematicae 27, 57-62, 2000 | 11 | 2000 |
Prime numbers in generalized Pascal triangles G Farkas, G Kallos Acta Technica Jaurinensis 1 (1), 109-117, 2008 | 9 | 2008 |
Large primes in generalized Pascal triangles G Farkas, G Kallós, G Kiss arXiv preprint arXiv:1111.3670, 2011 | 8 | 2011 |
Sieving for large Cunningham chains of length 3 of the first kind G Farkas, E Vatai Annales Univ. Sci. Budapest, Sect. Comp 40 (215-222), 1, 2013 | 7 | 2013 |
Digital expansion in Q (√(2)) G Farkas, A Kovács Annales Univ. Sci. Budapest., Sect. Comp 22, 83-94, 2003 | 7 | 2003 |
Digital expansion in real algebraic quadratic fields G Farkas Mathematica Pannonica 10 (2), 235-248, 1999 | 7 | 1999 |
Sieving for Large Twin Primes and Cunningham chains of length 2 of the second kind T Csajbók, G Farkas, J Kasza Annales Univ. Sci. Budapest, Sect. Comp 38, 117-128, 2012 | 6 | 2012 |
Location and number of periodic elements in Q (√ 2) G Farkas Annales Ilnzu. Scz. Bud. Sect. Cemp 20, 133-146, 2001 | 6 | 2001 |
The sandbox method in quadratic fields G Farkas, A Fülöp Annales Univ. Sci. Rolando Eötvös Budapest. Sect. Comput 28, 235-248, 2008 | 5 | 2008 |
The largest known Cunningham chain of length 3 of the first kind G Farkas, G Gévay, A Járai, E Vatai Studia Universitatis Babes-Bolyai Mathematica 59 (4), 457-462, 2014 | 4 | 2014 |
Periodic elements and number systems in Q (√ 2) G Farkas Mathematical and computer modelling 38 (7-9), 783-788, 2003 | 3 | 2003 |
Canonical expansions of integers in real quadratic fields A Kovács, G Farkas Annales Universitatis Scientiarum Budapestinensis de Rolando Eötvös …, 2004 | 2 | 2004 |
Numerical investigation of a cyclic-waiting queueing system with two types of customers G Farkas Annales Univ. Sci. Budapest., Sect. Comp 21, 153-163, 2002 | 2 | 2002 |
Cyber‐physical‐based welding systems: Components and implementation strategies AM Szőlősi József, Magyar Péter, Antal József, Szekeres Béla J., Farkas Gábor IET CYBER-PHYSICAL SYSTEMS: THEORY AND APPLICATIONS 2024, 1-20, 2024 | | 2024 |