Követés
Narayanan U Edakunni
Narayanan U Edakunni
E-mail megerősítve itt: cs.man.ac.uk - Kezdőlap
Cím
Hivatkozott rá
Hivatkozott rá
Év
Cost-sensitive boosting algorithms: Do we really need them?
N Nikolaou, N Edakunni, M Kull, P Flach, G Brown
Machine Learning 104, 359-384, 2016
802016
Beyond Fano's inequality: Bounds on the optimal F-score, BER, and cost-sensitive risk and their implications
MJ Zhao, N Edakunni, A Pocock, G Brown
The Journal of Machine Learning Research 14 (1), 1033-1090, 2013
802013
Predicting arrival times of vehicles based upon observed schedule adherence
A Tripathi, V Rajan, NU Edakunni
US Patent 9,159,032, 2015
592015
Methods and systems for analyzing customer care data
G Manjunath, A Sharma, NU Edakunni, D Gupta, M Gupta, S Kunde, ...
US Patent App. 15/064,642, 2017
162017
Method and system for recommending one or more vehicles for one or more requestors
S Jat, K Mukherjee, NU Edakunni, P Manohar
US Patent 9,978,111, 2018
152018
Kernel carpentry for online regression using randomly varying coefficient model
NU Edakunni, S Schaal, S Vijayakumar
152006
Boosting as a Product of Experts
NU Edakunni, G Brown, T Kovacs
Uncertainty in Artificial Intelligence, 187-194, 2011
122011
Modeling UCS as a mixture of experts
NU Edakunni, T Kovacs, G Brown, JAR Marshall
Proceedings of the 11th Annual conference on Genetic and Evolutionary …, 2009
122009
Fairxgboost: Fairness-aware classification in xgboost
S Ravichandran, D Khurana, B Venkatesh, NU Edakunni
arXiv preprint arXiv:2009.01442, 2020
112020
Method and system for scheduling vehicles along routes in a transportation system
K Mukherjee, A Kumar, P Manohar, NU Edakunni, S Jat
US Patent 9,746,332, 2017
112017
Method and system to predict a communication channel for communication with a customer service
NU Edakunni, S Galhotra
US Patent App. 15/077,085, 2017
72017
Efficient online classification using an ensemble of bayesian linear logistic regressors
NU Edakunni, S Vijayakumar
International Workshop on Multiple Classifier Systems, 102-111, 2009
72009
Systems and methods for real-time scheduling in a transportation system based upon a user criteria
NU Edakunni, K Baruah
US Patent 11,127,100, 2021
52021
Method and system for real-time prediction of crowdedness in vehicles in transit
A Sengupta, K Baruah, S Sankhya, NU Edakunni
US Patent App. 15/271,249, 2018
42018
Online, GA based mixture of experts: a probabilistic model of UCS
NU Edakunni, G Brown, T Kovacs
Proceedings of the 13th annual conference on Genetic and evolutionary …, 2011
42011
Accurate and Intuitive Contextual Explanations using Linear Model Trees
A Lahiri, NU Edakunni
arXiv preprint arXiv:2009.05322, 2020
32020
Use of gps signals from multiple vehicles for robust vehicle tracking
A Sengupta, NU Edakunni
US Patent App. 15/443,295, 2018
32018
Probabilistic Dependency Networks for Prediction and Diagnostics
NU Edakunni, A Raghunathan, A Tripathi, J Handley, F Roulland
Transportation Research Board 94th Annual Meeting, 2015
22015
Bayesian locally weighted online learning
NU Edakunni
The University of Edinburgh, 2010
22010
Accuracy exponentiation in UCS and its effect on voting margins
T Kovacs, N Edakunni, G Brown
Proceedings of the 13th annual conference on Genetic and evolutionary …, 2011
12011
A rendszer jelenleg nem tudja elvégezni a műveletet. Próbálkozzon újra később.
Cikkek 1–20