Support theorems for totally geodesic Radon transforms on constant curvature spaces Á Kurusa Proceedings of the American Mathematical Society 122 (2), 429-435, 1994 | 29 | 1994 |

The invertibility of the Radon transform on abstract rotational manifolds of real type A Kurusa Mathematica Scandinavica 70 (1), 112-126, 1992 | 17 | 1992 |

Radon transform on spaces of constant curvature C Berenstein, E Tarabusi, Á Kurusa Proceedings of the American Mathematical Society 125 (2), 455-461, 1997 | 16 | 1997 |

The Radon transform on hyperbolic space Á Kurusa Geometriae Dedicata 40 (3), 325-339, 1991 | 16 | 1991 |

Can you recognize the shape of a figure from its shadows? J Kincses, Á Kurusa Beitrage zur Algebra und Geometrie 36 (1), 25-35, 1995 | 14 | 1995 |

The Radon transform on half sphere Á Kurusa ACTA SCIENTIARUM MATHEMATICARUM-SZEGED 58 (1-4), 143-158, 1993 | 13 | 1993 |

You can recognize the shape of a figure from its shadows! Á Kurusa Geometriae Dedicata 59 (2), 113-125, 1996 | 11 | 1996 |

Inequalities for hyperconvex sets F Fodor, Á Kurusa, V Vígh Advances in Geometry 16 (3), 337-348, 2016 | 10 | 2016 |

Is a convex plane body determined by an isoptic? Á Kurusa Beiträge zur Algebra und Geometrie/Contributions to Algebra and Geometry 53 …, 2012 | 9 | 2012 |

The shadow picture problem for nonintersecting curves Á Kurusa Geometriae Dedicata 59 (1), 103-112, 1996 | 9 | 1996 |

A Characterization of the Radon Transform's Range by a System of PDEs Á Kurusa Journal of Mathematical Analysis and Applications 161 (1), 218-226, 1991 | 9 | 1991 |

Isoptic characterization of spheres Á Kurusa, T Ódor Journal of Geometry 106 (1), 63-73, 2015 | 8 | 2015 |

Support curves of invertible Radon transforms Á Kurusa Archiv der Mathematik 61 (5), 448-458, 1993 | 8 | 1993 |

Conics in Minkowski geometries Á Kurusa Aequationes mathematicae 92 (5), 949-961, 2018 | 5 | 2018 |

Characterizations of balls by sections and caps Á Kurusa, T Ódor Beiträge zur Algebra und Geometrie/Contributions to Algebra and Geometry 56 …, 2015 | 5 | 2015 |

A characterization of the Radon transform and its dual on Euclidean space Á Kurusa ACTA SCIENTIARUM MATHEMATICARUM-SZEGED 54 (1-2), 273-276, 1990 | 5 | 1990 |

Spherical Floating Body Á Kurusa, T Ódor Acta Sci. Math. (Szeged) 81 (3-4), 699-714, 2015 | 4 | 2015 |

Ceva’s and Menelaus’ Theorems characterize hyperbolic geometry among Hilbert geometries J Kozma, Á Kurusa J. Geom 106 (3), 465-470, 2015 | 4 | 2015 |

New unified Radon inversion formulas Á Kurusa Acta Mathematica Hungarica 60 (3-4), 283-290, 1992 | 4 | 1992 |

Euler’s ratio-sum theorem revisited Á Kurusa, J Kozma Forum Geom 19 (2), 2019 | 3 | 2019 |