Follow
Marcella Takáts
Marcella Takáts
Verified email at cs.elte.hu
Title
Cited by
Cited by
Year
Resolving sets and semi-resolving sets in finite projective planes
T Héger, M Takáts
arXiv preprint arXiv:1207.5469, 2012
322012
Search problems in vector spaces
T Héger, B Patkós, M Takáts
Designs, Codes and Cryptography 76 (2), 207-216, 2015
192015
The number of directions determined by less than q points
SL Fancsali, P Sziklai, M Takáts
Journal of Algebraic Combinatorics 37, 27-37, 2013
182013
Vandermonde sets and super-Vandermonde sets
P Sziklai, M Takáts
Finite Fields and Their Applications 14 (4), 1056-1067, 2008
122008
On the metric dimension of affine planes, biaffine planes and generalized quadrangles
D Bartoli, T Héger, G Kiss, M Takáts
arXiv preprint arXiv:1706.06583, 2017
92017
On the structure of the directions not determined by a large affine point set
J De Beule, P Sziklai, M Takáts
Journal of Algebraic Combinatorics 38, 889-899, 2013
62013
The metric dimension of the incidence graphs of projective and affine planes of small order
T Héger, P Szilárd, M Takáts
Australas. J. Combin 78 (3), 352-375, 2020
52020
An extension of the direction problem
P Sziklai, M Takáts
Discrete Mathematics 312 (12-13), 2083-2087, 2012
52012
Generalized threshold secret sharing and finite geometry
P Ligeti, P Sziklai, M Takáts
Designs, Codes and Cryptography 89 (9), 2067-2078, 2021
32021
Directions and other topics in Galois Geometries
M Takáts
Thesis. Department of Computer Science, Institute of Mathematics Eötvös …, 2014
22014
The resultant method in higher dimensions
N Harrach, L Storme, P Sziklai, M Takáts
Finite Fields and Their Applications 99, 102493, 2024
2024
On the metric dimension of affine planes, biaffine planes and generalized quadrangles
M Takáts
Finite Geometries Fifth Irsee Conference, 63, 2017
2017
Multilevel secret sharing by finite geometry
M Gyarmati, P Ligeti, P Sziklai, M Takáts
Book of Abstracts, 38, 0
Vandermonde sets and super-Vandermonde sets
M Takats
The system can't perform the operation now. Try again later.
Articles 1–14