Követés
Xiaocheng Tang (唐小程)
Xiaocheng Tang (唐小程)
AI Research Scientist @ Meta GenAI
E-mail megerősítve itt: fb.com - Kezdőlap
Cím
Hivatkozott rá
Hivatkozott rá
Év
Rethinking architecture selection in differentiable NAS
R Wang, M Cheng, X Chen, X Tang, CJ Hsieh
arXiv preprint arXiv:2108.04392, 2021
1852021
A deep value-network based approach for multi-driver order dispatching
X Tang, Z Qin, F Zhang, Z Wang, Z Xu, Y Ma, H Zhu, J Ye
Proceedings of the 25th ACM SIGKDD international conference on knowledge …, 2019
1772019
Deep reinforcement learning with knowledge transfer for online rides order dispatching
Z Wang, Z Qin, X Tang, J Ye, H Zhu
2018 IEEE International Conference on Data Mining (ICDM), 617-626, 2018
1452018
Drnas: Dirichlet neural architecture search
X Chen, R Wang, M Cheng, X Tang, CJ Hsieh
International Conference on Learning Representations, 2021
1332021
Deep reinforcement learning for multi-driver vehicle dispatching and repositioning problem
J Holler, R Vuorio, Z Qin, X Tang, Y Jiao, T Jin, S Singh, C Wang, J Ye
2019 IEEE International Conference on Data Mining (ICDM), 1090-1095, 2019
1202019
Ride-hailing order dispatching at didi via reinforcement learning
Z Qin, X Tang, Y Jiao, F Zhang, Z Xu, H Zhu, J Ye
INFORMS Journal on Applied Analytics 50 (5), 272-286, 2020
1192020
Coride: joint order dispatching and fleet management for multi-scale ride-hailing platforms
J Jin, M Zhou, W Zhang, M Li, Z Guo, Z Qin, Y Jiao, X Tang, C Wang, ...
Proceedings of the 28th ACM international conference on information and …, 2019
1092019
Practical inexact proximal quasi-Newton method with global complexity analysis
K Scheinberg, X Tang
Mathematical Programming 160, 495-529, 2016
892016
Real-world ride-hailing vehicle repositioning using deep reinforcement learning
Y Jiao, X Tang, ZT Qin, S Li, F Zhang, H Zhu, J Ye
Transportation Research Part C: Emerging Technologies 130, 103289, 2021
552021
Value function is all you need: A unified learning framework for ride hailing platforms
X Tang, F Zhang, Z Qin, Y Wang, D Shi, B Song, Y Tong, H Zhu, J Ye
Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data …, 2021
392021
InBEDE: Integrating contextual bandit with TD learning for joint pricing and dispatch of ride-hailing platforms
H Chen, Y Jiao, Z Qin, X Tang, H Li, B An, H Zhu, J Ye
2019 IEEE International Conference on Data Mining (ICDM), 61-70, 2019
322019
Combinatorial optimization meets reinforcement learning: Effective taxi order dispatching at large-scale
Y Tong, D Shi, Y Xu, W Lv, Z Qin, X Tang
IEEE Transactions on Knowledge and Data Engineering 35 (10), 9812-9823, 2021
222021
Measuring sample efficiency and generalization in reinforcement learning benchmarks: Neurips 2020 procgen benchmark
S Mohanty, J Poonganam, A Gaidon, A Kolobov, B Wulfe, D Chakraborty, ...
arXiv preprint arXiv:2103.15332, 2021
222021
Reinforcement learning in the wild: Scalable RL dispatching algorithm deployed in ridehailing marketplace
S Sadeghi Eshkevari, X Tang, Z Qin, J Mei, C Zhang, Q Meng, J Xu
Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and …, 2022
172022
Rank-nosh: Efficient predictor-based architecture search via non-uniform successive halving
R Wang, X Chen, M Cheng, X Tang, CJ Hsieh
Proceedings of the IEEE/CVF International Conference on Computer Vision …, 2021
172021
Algorithm aversion: Evidence from ridesharing drivers
M Liu, X Tang, S Xia, S Zhang, Y Zhu, Q Meng
Management Science, 2023
162023
Golfer: Trajectory prediction with masked goal conditioning mnm network
X Tang, SS Eshkevari, H Chen, W Wu, W Qian, X Wang
arXiv preprint arXiv:2207.00738, 2022
102022
Deep reinforcement learning for ride-sharing dispatching and repositioning
ZT Qin, X Tang, Y Jiao, F Zhang, C Wang, QT Li
Proceedings of the 28th International Joint Conference on Artificial …, 2019
102019
Complexity of inexact proximal Newton methods
K Scheinberg, X Tang
arXiv preprint arxiv:1311.6547, 75, 2013
102013
Multi-objective distributional reinforcement learning for large-scale order dispatching
F Zhou, C Lu, X Tang, F Zhang, Z Qin, J Ye, H Zhu
2021 IEEE International Conference on Data Mining (ICDM), 1541-1546, 2021
92021
A rendszer jelenleg nem tudja elvégezni a műveletet. Próbálkozzon újra később.
Cikkek 1–20