Structured bayesian pruning via log-normal multiplicative noise K Neklyudov, D Molchanov, A Ashukha, DP Vetrov Advances in Neural Information Processing Systems 30, 2017 | 231 | 2017 |
Performance of machine learning algorithms in predicting game outcome from drafts in dota 2 A Semenov, P Romov, S Korolev, D Yashkov, K Neklyudov Analysis of Images, Social Networks and Texts: 5th International Conference …, 2017 | 97 | 2017 |
Uncertainty estimation via stochastic batch normalization A Atanov, A Ashukha, D Molchanov, K Neklyudov, D Vetrov Advances in Neural Networks–ISNN 2019: 16th International Symposium on …, 2019 | 61 | 2019 |
Involutive MCMC: a unifying framework K Neklyudov, M Welling, E Egorov, D Vetrov International Conference on Machine Learning, 7273-7282, 2020 | 39 | 2020 |
Action Matching: Learning Stochastic Dynamics from Samples K Neklyudov, R Brekelmans, D Severo, A Makhzani | 33 | 2023 |
Variance networks: When expectation does not meet your expectations K Neklyudov, D Molchanov, A Ashukha, D Vetrov arXiv preprint arXiv:1803.03764, 2018 | 33 | 2018 |
Metropolis-Hastings view on variational inference and adversarial training K Neklyudov, E Egorov, P Shvechikov, D Vetrov arXiv preprint arXiv:1810.07151, 2018 | 19 | 2018 |
Applications of Machine Learning in Dota 2: Literature Review and Practical Knowledge Sharing. AM Semenov, P Romov, K Neklyudov, D Yashkov, D Kireev MLSA@ PKDD/ECML, 2016 | 14 | 2016 |
Wasserstein quantum Monte Carlo: a novel approach for solving the quantum many-body Schrödinger equation K Neklyudov, J Nys, L Thiede, J Carrasquilla, Q Liu, M Welling, ... Advances in Neural Information Processing Systems 36, 2024 | 10 | 2024 |
Orbital mcmc K Neklyudov, M Welling International Conference on Artificial Intelligence and Statistics, 5790-5814, 2022 | 9 | 2022 |
A computational framework for solving Wasserstein Lagrangian flows K Neklyudov, R Brekelmans, A Tong, L Atanackovic, Q Liu, A Makhzani arXiv preprint arXiv:2310.10649, 2023 | 8 | 2023 |
Deterministic gibbs sampling via ordinary differential equations K Neklyudov, R Bondesan, M Welling arXiv preprint arXiv:2106.10188, 2021 | 5 | 2021 |
The Implicit Metropolis-Hastings Algorithm K Neklyudov, E Egorov, D Vetrov Advances in Neural Information Processing Systems, 2019, 2019 | 5 | 2019 |
Quantum hypernetworks: Training binary neural networks in quantum superposition J Carrasquilla, M Hibat-Allah, E Inack, A Makhzani, K Neklyudov, ... arXiv preprint arXiv:2301.08292, 2023 | 4 | 2023 |
Diffusion models as constrained samplers for optimization with unknown constraints L Kong, Y Du, W Mu, K Neklyudov, V De Bortol, H Wang, D Wu, A Ferber, ... arXiv preprint arXiv:2402.18012, 2024 | 2 | 2024 |
Structured inverse-free natural gradient: Memory-efficient & numerically-stable kfac for large neural nets W Lin, F Dangel, R Eschenhagen, K Neklyudov, A Kristiadi, RE Turner, ... arXiv preprint arXiv:2312.05705, 2023 | 2 | 2023 |
Maxentropy pursuit variational inference E Egorov, K Neklydov, R Kostoev, E Burnaev Advances in Neural Networks–ISNN 2019: 16th International Symposium on …, 2019 | 2 | 2019 |
Meta Flow Matching: Integrating Vector Fields on the Wasserstein Manifold L Atanackovic, X Zhang, B Amos, M Blanchette, LJ Lee, Y Bengio, A Tong, ... arXiv preprint arXiv:2408.14608, 2024 | 1 | 2024 |
On Schrödinger Bridge Matching and Expectation Maximization R Brekelmans, K Neklyudov NeurIPS 2023 Workshop Optimal Transport and Machine Learning, 2023 | 1 | 2023 |
Efficient Evolutionary Search over Chemical Space with Large Language Models H Wang, M Skreta, CT Ser, W Gao, L Kong, F Streith-Kalthoff, C Duan, ... arXiv preprint arXiv:2406.16976, 2024 | | 2024 |