Follow
Kirill Neklyudov
Kirill Neklyudov
Assistant Professor at Université de Montréal; Core Academic Member at Mila - Quebec AI Institute
Verified email at umontreal.ca - Homepage
Title
Cited by
Cited by
Year
Structured bayesian pruning via log-normal multiplicative noise
K Neklyudov, D Molchanov, A Ashukha, DP Vetrov
Advances in Neural Information Processing Systems 30, 2017
2312017
Performance of machine learning algorithms in predicting game outcome from drafts in dota 2
A Semenov, P Romov, S Korolev, D Yashkov, K Neklyudov
Analysis of Images, Social Networks and Texts: 5th International Conference …, 2017
972017
Uncertainty estimation via stochastic batch normalization
A Atanov, A Ashukha, D Molchanov, K Neklyudov, D Vetrov
Advances in Neural Networks–ISNN 2019: 16th International Symposium on …, 2019
612019
Involutive MCMC: a unifying framework
K Neklyudov, M Welling, E Egorov, D Vetrov
International Conference on Machine Learning, 7273-7282, 2020
392020
Action Matching: Learning Stochastic Dynamics from Samples
K Neklyudov, R Brekelmans, D Severo, A Makhzani
332023
Variance networks: When expectation does not meet your expectations
K Neklyudov, D Molchanov, A Ashukha, D Vetrov
arXiv preprint arXiv:1803.03764, 2018
332018
Metropolis-Hastings view on variational inference and adversarial training
K Neklyudov, E Egorov, P Shvechikov, D Vetrov
arXiv preprint arXiv:1810.07151, 2018
192018
Applications of Machine Learning in Dota 2: Literature Review and Practical Knowledge Sharing.
AM Semenov, P Romov, K Neklyudov, D Yashkov, D Kireev
MLSA@ PKDD/ECML, 2016
142016
Wasserstein quantum Monte Carlo: a novel approach for solving the quantum many-body Schrödinger equation
K Neklyudov, J Nys, L Thiede, J Carrasquilla, Q Liu, M Welling, ...
Advances in Neural Information Processing Systems 36, 2024
102024
Orbital mcmc
K Neklyudov, M Welling
International Conference on Artificial Intelligence and Statistics, 5790-5814, 2022
92022
A computational framework for solving Wasserstein Lagrangian flows
K Neklyudov, R Brekelmans, A Tong, L Atanackovic, Q Liu, A Makhzani
arXiv preprint arXiv:2310.10649, 2023
82023
Deterministic gibbs sampling via ordinary differential equations
K Neklyudov, R Bondesan, M Welling
arXiv preprint arXiv:2106.10188, 2021
52021
The Implicit Metropolis-Hastings Algorithm
K Neklyudov, E Egorov, D Vetrov
Advances in Neural Information Processing Systems, 2019, 2019
52019
Quantum hypernetworks: Training binary neural networks in quantum superposition
J Carrasquilla, M Hibat-Allah, E Inack, A Makhzani, K Neklyudov, ...
arXiv preprint arXiv:2301.08292, 2023
42023
Diffusion models as constrained samplers for optimization with unknown constraints
L Kong, Y Du, W Mu, K Neklyudov, V De Bortol, H Wang, D Wu, A Ferber, ...
arXiv preprint arXiv:2402.18012, 2024
22024
Structured inverse-free natural gradient: Memory-efficient & numerically-stable kfac for large neural nets
W Lin, F Dangel, R Eschenhagen, K Neklyudov, A Kristiadi, RE Turner, ...
arXiv preprint arXiv:2312.05705, 2023
22023
Maxentropy pursuit variational inference
E Egorov, K Neklydov, R Kostoev, E Burnaev
Advances in Neural Networks–ISNN 2019: 16th International Symposium on …, 2019
22019
Meta Flow Matching: Integrating Vector Fields on the Wasserstein Manifold
L Atanackovic, X Zhang, B Amos, M Blanchette, LJ Lee, Y Bengio, A Tong, ...
arXiv preprint arXiv:2408.14608, 2024
12024
On Schrödinger Bridge Matching and Expectation Maximization
R Brekelmans, K Neklyudov
NeurIPS 2023 Workshop Optimal Transport and Machine Learning, 2023
12023
Efficient Evolutionary Search over Chemical Space with Large Language Models
H Wang, M Skreta, CT Ser, W Gao, L Kong, F Streith-Kalthoff, C Duan, ...
arXiv preprint arXiv:2406.16976, 2024
2024
The system can't perform the operation now. Try again later.
Articles 1–20