A convolutional neural network based on a capsule network with strong generalization for bearing fault diagnosis Z Zhu, G Peng, Y Chen, H Gao Neurocomputing 323, 62-75, 2019 | 300 | 2019 |
A novel deep learning method based on attention mechanism for bearing remaining useful life prediction Y Chen, G Peng, Z Zhu, S Li Applied Soft Computing 86, 105919, 2020 | 247 | 2020 |
Ntire 2020 challenge on spectral reconstruction from an rgb image B Arad, R Timofte, O Ben-Shahar, YT Lin, GD Finlayson Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2020 | 181 | 2020 |
Hyperspectral Image Super-resolution via Deep Progressive Zero-centric Residual Learning Z Zhu, J Hou, J Chen, H Zeng, J Zhou IEEE TIP (https://github.com/ZHU-Zhiyu/PZRes-Net), 2020 | 46 | 2020 |
CorrNet3D: Unsupervised end-to-end learning of dense correspondence for 3D point clouds Y Zeng, Y Qian, Z Zhu, J Hou, H Yuan, Y He CVPR (https://github.com/ZENGYIMING-EAMON/CorrNet3D), 6052-6061, 2021 | 41 | 2021 |
WDA: an improved Wasserstein distance-based transfer learning fault diagnosis method Z Zhu, L Wang, G Peng, S Li Sensors 21 (13), 4394, 2021 | 16 | 2021 |
Deep Amended Gradient Descent for Efficient Spectral Reconstruction from Single RGB Images Z Zhu, H Liu, J Hou, S Jia, Q Zhang IEEE TCI(https://github.com/ZHU-Zhiyu/GD-Net), 2021 | 15 | 2021 |
Semantic-embedded unsupervised spectral reconstruction from single RGB images in the wild Z Zhu, H Liu, J Hou, H Zeng, Q Zhang ICCV (https://github.com/ZHU-Zhiyu/Unsupervised-Spectral-Reconstruction …, 2021 | 13 | 2021 |
GLENet: Boosting 3D object detectors with generative label uncertainty estimation Y Zhang, Q Zhang, Z Zhu, J Hou, Y Yuan IJCV, 2022 | 11 | 2022 |
Deep Posterior Distribution-based Embedding for Hyperspectral Image Super-resolution J Hou*, Z Zhu*, J Hou, H Zeng, J Wu, J Zhou IEEE TIP (https://github.com/jinnh/PDE-Net), 2022 | 5 | 2022 |
Learning Graph-embedded Key-event Back-tracing for Object Tracking in Event Clouds Z Zhu, J Hou, X Lyu Neurips 2022 (https://github.com/ZHU-Zhiyu/Event-tracking), 2022 | 4 | 2022 |
When residual learning meets dense aggregation: Rethinking the aggregation of deep neural networks Z Zhu, ZP Bian, J Hou, Y Wang, LP Chau arXiv preprint arXiv:2004.08796, 2020 | 4 | 2020 |
Learning spatial-angular fusion for compressive light field imaging in a cycle-consistent framework X Lyu, Z Zhu, M Guo, J Jin, J Hou, H Zeng ACM MM, 4613-4621, 2021 | 3 | 2021 |
Deep Diversity-Enhanced Feature Representation of Hyperspectral Images J Hou, Z Zhu, J Hou, H Liu, H Zeng, D Meng arXiv preprint arXiv:2301.06132, 2023 | 1 | 2023 |
Deep selective combinatorial embedding and consistency regularization for light field super-resolution J Jin, J Hou, Z Zhu, J Chen, S Kwong arXiv preprint arXiv:2009.12537, 2020 | 1 | 2020 |
Spatial-Temporal Enhanced Transformer Towards Multi-Frame 3D Object Detection Y Zhang, Z Zhu, J Hou arXiv preprint arXiv:2307.00347, 2023 | | 2023 |
Learning ODE Trajectory-constrained Diffusion Models for Image Restoration J Hou*, Z Zhu*, J Hou | | 2023 |
Global Structure-Aware Diffusion Process for Low-Light Image Enhancement J Hou*, Z Zhu*, J Hou, H Liu, H Zeng, H Yuan NeurIPS2023 (https://github.com/jinnh/GSAD), 2023 | | 2023 |
Cross-modal Orthogonal High-rank Augmentation for RGB-Event Transformer-trackers Z Zhu, J Hou, DO Wu ICCV 2023 (https://github.com/ZHU-Zhiyu/High-Rank_RGB-Event_Tracker), 2023 | | 2023 |
Rank-Enhanced Low-Dimensional Convolution Set for Hyperspectral Image Denoising J Hou, Z Zhu, H Liu, J Hou arXiv preprint arXiv:2207.04266, 2022 | | 2022 |