Követés
Tara Sainath
Tara Sainath
Principal Research Scientist, Google
E-mail megerősítve itt: google.com - Kezdőlap
Cím
Hivatkozott rá
Hivatkozott rá
Év
Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups
G Hinton, L Deng, D Yu, GE Dahl, A Mohamed, N Jaitly, A Senior, ...
IEEE Signal processing magazine 29 (6), 82-97, 2012
139492012
Gemini: a family of highly capable multimodal models
G Team, R Anil, S Borgeaud, JB Alayrac, J Yu, R Soricut, J Schalkwyk, ...
arXiv preprint arXiv:2312.11805, 2023
22092023
Deep convolutional neural networks for large-scale speech tasks
TN Sainath, B Kingsbury, G Saon, H Soltau, A Mohamed, G Dahl, ...
Neural networks 64, 39-48, 2015
20572015
Convolutional, long short-term memory, fully connected deep neural networks
TN Sainath, O Vinyals, A Senior, H Sak
2015 IEEE international conference on acoustics, speech and signal …, 2015
20542015
Improving deep neural networks for LVCSR using rectified linear units and dropout
GE Dahl, TN Sainath, GE Hinton
2013 IEEE international conference on acoustics, speech and signal …, 2013
19222013
State-of-the-art speech recognition with sequence-to-sequence models
CC Chiu, TN Sainath, Y Wu, R Prabhavalkar, P Nguyen, Z Chen, ...
2018 IEEE international conference on acoustics, speech and signal …, 2018
14722018
Deep learning for audio signal processing
H Purwins, B Li, T Virtanen, J Schlüter, SY Chang, T Sainath
IEEE Journal of Selected Topics in Signal Processing 13 (2), 206-219, 2019
8962019
Low-rank matrix factorization for deep neural network training with high-dimensional output targets
TN Sainath, B Kingsbury, V Sindhwani, E Arisoy, B Ramabhadran
2013 IEEE international conference on acoustics, speech and signal …, 2013
8102013
Streaming end-to-end speech recognition for mobile devices
Y He, TN Sainath, R Prabhavalkar, I McGraw, R Alvarez, D Zhao, ...
ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and …, 2019
7482019
Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context
G Team, P Georgiev, VI Lei, R Burnell, L Bai, A Gulati, G Tanzer, ...
arXiv preprint arXiv:2403.05530, 2024
6992024
Convolutional neural networks for small-footprint keyword spotting.
TN Sainath, C Parada
Interspeech, 1478-1482, 2015
6552015
Learning the speech front-end with raw waveform CLDNNs.
TN Sainath, RJ Weiss, AW Senior, KW Wilson, O Vinyals
Interspeech, 1-5, 2015
6252015
Deep belief networks using discriminative features for phone recognition
A Mohamed, TN Sainath, G Dahl, B Ramabhadran, GE Hinton, ...
2011 IEEE international conference on acoustics, speech and signal …, 2011
4092011
A Comparison of sequence-to-sequence models for speech recognition.
R Prabhavalkar, K Rao, TN Sainath, B Li, L Johnson, N Jaitly
Interspeech, 939-943, 2017
3982017
Self-supervised speech representation learning: A review
A Mohamed, H Lee, L Borgholt, JD Havtorn, J Edin, C Igel, K Kirchhoff, ...
IEEE Journal of Selected Topics in Signal Processing 16 (6), 1179-1210, 2022
3762022
Improvements to deep convolutional neural networks for LVCSR
TN Sainath, B Kingsbury, A Mohamed, GE Dahl, G Saon, H Soltau, ...
2013 IEEE workshop on automatic speech recognition and understanding, 315-320, 2013
3172013
Deep neural network language models
E Arisoy, TN Sainath, B Kingsbury, B Ramabhadran
Proceedings of the NAACL-HLT 2012 Workshop: Will We Ever Really Replace the …, 2012
3132012
Multilingual speech recognition with a single end-to-end model
S Toshniwal, TN Sainath, RJ Weiss, B Li, P Moreno, E Weinstein, K Rao
2018 IEEE international conference on acoustics, speech and signal …, 2018
2982018
Structured transforms for small-footprint deep learning
V Sindhwani, T Sainath, S Kumar
Advances in Neural Information Processing Systems 28, 2015
2892015
An analysis of incorporating an external language model into a sequence-to-sequence model
A Kannan, Y Wu, P Nguyen, TN Sainath, Z Chen, R Prabhavalkar
2018 IEEE International Conference on Acoustics, Speech and Signal …, 2018
2882018
A rendszer jelenleg nem tudja elvégezni a műveletet. Próbálkozzon újra később.
Cikkek 1–20