Követés
Joscha Gedicke
Joscha Gedicke
E-mail megerősítve itt: ins.uni-bonn.de - Kezdőlap
Cím
Hivatkozott rá
Hivatkozott rá
Év
Guaranteed lower bounds for eigenvalues
C Carstensen, J Gedicke
Mathematics of Computation 83 (290), 2605-2629, 2014
1012014
An oscillation-free adaptive FEM for symmetric eigenvalue problems
C Carstensen, J Gedicke
Numerische Mathematik 118 (3), 401-427, 2011
582011
Explicit error estimates for Courant, Crouzeix-Raviart and Raviart-Thomas finite element methods
C Carstensen, J Gedicke, D Rim
Journal of Computational Mathematics 30 (4), 2012
552012
An adaptive finite element eigenvalue solver of asymptotic quasi-optimal computational complexity
C Carstensen, J Gedicke
SIAM Journal on Numerical Analysis 50 (3), 1029-1057, 2012
492012
Computational competition of symmetric mixed FEM in linear elasticity
C Carstensen, M Eigel, J Gedicke
Computer methods in applied mechanics and engineering 200 (41-44), 2903-2915, 2011
412011
Arnold--Winther mixed finite elements for Stokes eigenvalue problems
J Gedicke, A Khan
SIAM Journal on Scientific Computing 40 (5), A3449-A3469, 2018
292018
An Adaptive P_1 Finite Element Method for Two-Dimensional Transverse Magnetic Time Harmonic Maxwell’s Equations with General Material Properties and General Boundary Conditions
SC Brenner, J Gedicke, LY Sung
Journal of Scientific Computing 68 (2), 848-863, 2016
242016
An adaptive homotopy approach for non-selfadjoint eigenvalue problems
C Carstensen, J Gedicke, V Mehrmann, A Miedlar
Numerische Mathematik 119 (3), 557-583, 2011
242011
Interior Penalty Methods for an Elliptic Distributed Optimal Control Problem on Nonconvex Polygonal Domains with Pointwise State Constraints
SC Brenner, J Gedicke, LY Sung
SIAM Journal on Numerical Analysis 56 (3), 1758-1785, 2018
222018
Hodge decomposition for two‐dimensional time‐harmonic Maxwell's equations: impedance boundary condition
SC Brenner, J Gedicke, LY Sung
Mathematical Methods in the Applied Sciences 40 (2), 370-390, 2017
202017
A posteriori error estimators for convection–diffusion eigenvalue problems
J Gedicke, C Carstensen
Computer Methods in Applied Mechanics and Engineering 268, 160-177, 2014
162014
An equilibrated a posteriori error estimator for arbitrary-order Nédélec elements for magnetostatic problems
J Gedicke, S Geevers, I Perugia
Journal of Scientific Computing 83, 1-23, 2020
152020
Justification of the saturation assumption
C Carstensen, D Gallistl, J Gedicke
Numerische Mathematik 134, 1-25, 2016
152016
P 1 finite element methods for an elliptic optimal control problem with pointwise state constraints
SC Brenner, LY Sung, J Gedicke
IMA Journal of Numerical Analysis 40 (1), 1, 2020
142020
An A Posteriori Analysis of Interior Penalty Methods for the Obstacle Problem of Clamped Kirchhoff Plates
SC Brenner, J Gedicke, LY Sung, Y Zhang
SIAM Journal on Numerical Analysis 55 (1), 87-108, 2017
142017
An adaptive P 1 finite element method for two-dimensional Maxwell’s equations
SC Brenner, J Gedicke, LY Sung
Journal of Scientific Computing 55 (3), 738-754, 2013
142013
Robust residual-based a posteriori Arnold–Winther mixed finite element analysis in elasticity
C Carstensen, J Gedicke
Computer Methods in Applied Mechanics and Engineering 300, 245-264, 2016
132016
A polynomial-degree-robust a posteriori error estimator for Nédélec discretizations of magnetostatic problems
J Gedicke, S Geevers, I Perugia, J Schöberl
SIAM Journal on Numerical Analysis 59 (4), 2237-2253, 2021
122021
Divergence-conforming discontinuous Galerkin finite elements for Stokes eigenvalue problems
J Gedicke, A Khan
Numerische Mathematik 144, 585-614, 2020
122020
Numerical experiments for the Arnold--Winther mixed finite elements for the Stokes problem
C Carstensen, J Gedicke, EJ Park
SIAM Journal on Scientific Computing 34 (4), A2267-A2287, 2012
112012
A rendszer jelenleg nem tudja elvégezni a műveletet. Próbálkozzon újra később.
Cikkek 1–20