Követés
Giovanni Rebaudo
Cím
Hivatkozott rá
Hivatkozott rá
Év
Clustering consistency with Dirichlet process mixtures
F Ascolani, A Lijoi, G Rebaudo, G Zanella
Biometrika 110 (2), 551-558, 2023
332023
Flexible clustering via hidden hierarchical Dirichlet priors
A Lijoi, I Prünster, G Rebaudo
Scandinavian Journal of Statistics 50 (1), 213-234, 2023
222023
A closed-form filter for binary time series
A Fasano, G Rebaudo, D Durante, S Petrone
Statistics and Computing 31 (4), 1-20, 2021
202021
Separate exchangeability as modeling principle in Bayesian nonparametrics
G Rebaudo, Q Lin, P Mueller
arXiv preprint arXiv:2112.07755, 2021
112021
Efficient expectation propagation for posterior approximation in high-dimensional probit models
A Fasano, N Anceschi, B Franzolini, G Rebaudo
Book of Short Papers - SIS 2023, 1133-1138, 2023
42023
Variational inference for the smoothing distribution in dynamic probit models
A Fasano, G Rebaudo
Book of short papers - SIS 2021, 1076-1081, 2021
42021
Graph-aligned random partition model (GARP)
G Rebaudo, P Mueller
Journal of the American Statistical Association, 2024
22024
Multivariate species sampling processes
B Franzolini, A Lijoi, I Prünster, G Rebaudo
Working Paper, 2021
22021
Entropy regularization in probabilistic clustering
B Franzolini, G Rebaudo
Statistical Methods & Applications 33, 37-60, 2024
12024
Individual differences in working memory impact the trajectory of non-native speech category learning
CL Roark, G Paulon, G Rebaudo, JR McHaney, A Sarkar, ...
PLOS ONE 19 (6), e0297917, 1-26, 2024
12024
Bayesian inference for the multinomial probit model under Gaussian prior distribution
A Fasano, G Rebaudo, N Anceschi
Book of Short Papers - SIS 2022, 871-876, 2022
12022
Discussion of ‘Root and community inference on the latent growth process of a network’by Crane and Xu
M Catalano, A Fasano, M Giordano, G Rebaudo
Journal of the Royal Statistical Society Series B: Statistical Methodology …, 2024
2024
Scalable expectation propagation for generalized linear models
N Anceschi, A Fasano, B Franzolini, G Rebaudo
arXiv preprint arXiv:2407.02128, 2024
2024
Contribution Discussion of ‘Root and community inference on the latent growth process of a network’by Crane and Xu
M Catalano, A Fasano, M Giordano, G Rebaudo
Journal of the Royal Statistical Society Series B: Statistical Methodology …, 2024
2024
Contributed discussion to" Giordano, R., Liu, R., Jordan, MI, Broderick, T. Evaluating Sensitivity to the Stick-Breaking Prior in Bayesian Nonparametrics (with Discussion …
G Rebaudo, A Fasano, B Franzolini, P Müller
Bayesian Analysis 18 (1), 287-366, 2023
2023
A discussion of “Martingale posterior distributions” by Fong, Holmes and Walker
M Catalano, A Fasano, G Rebaudo
Journal of the Royal Statistical Society Series B: Statistical Methodology, 2023
2023
Expectation propagation for the smoothing distribution in dynamic probit
N Anceschi, A Fasano, G Rebaudo
Bayesian Statistics, New Generations New Approaches (BaYSM2022), 2023
2023
Bayesian forecasting of multivariate longitudinal zero-inflated counts: an application to civil conflict
B Franzolini, L Bondi, A Fasano, G Rebaudo
Book of Short Papers - CLADAG 2023, 465-468, 2023
2023
Efficient computation of predictive probabilities in probit models via expectation propagation
A Fasano, N Anceschi, B Franzolini, G Rebaudo
Book of Short Papers - CLADAG 2023, 449-452, 2023
2023
A discussion on: “Evaluating sensitivity to the stick-breaking prior in Bayesian nonparametrics” by Giordano, Liu, Jordan and Broderick
G Rebaudo, A Fasano, B Franzolini, P Müller
Bayesian Analysis 18, 345-347, 2023
2023
A rendszer jelenleg nem tudja elvégezni a műveletet. Próbálkozzon újra később.
Cikkek 1–20