Követés
Jiang Hu
Jiang Hu
Postdoc at University of California, Berkeley
E-mail megerősítve itt: pku.edu.cn - Kezdőlap
Cím
Hivatkozott rá
Hivatkozott rá
Év
A brief introduction to manifold optimization
J Hu, X Liu, ZW Wen, YX Yuan
Journal of the Operations Research Society of China 8, 199-248, 2020
2012020
Radiology-llama2: Best-in-class large language model for radiology
Z Liu, Y Li, P Shu, A Zhong, L Yang, C Ju, Z Wu, C Ma, J Luo, C Chen, ...
arXiv preprint arXiv:2309.06419, 2023
762023
Adaptive quadratically regularized Newton method for Riemannian optimization
J Hu, A Milzarek, Z Wen, Y Yuan
SIAM Journal on Matrix Analysis and Applications 39 (3), 1181-1207, 2018
662018
Ma-sam: Modality-agnostic sam adaptation for 3d medical image segmentation
C Chen, J Miao, D Wu, A Zhong, Z Yan, S Kim, J Hu, Z Liu, L Sun, X Li, ...
Medical Image Analysis 98, 103310, 2024
592024
Structured quasi-Newton methods for optimization with orthogonality constraints
J Hu, B Jiang, L Lin, Z Wen, Y Yuan
SIAM Journal on Scientific Computing 41 (4), A2239-A2269, 2019
372019
A note on semidefinite programming relaxations for polynomial optimization over a single sphere
J Hu, B Jiang, X Liu, ZW Wen
Science China Mathematics 59, 1543-1560, 2016
172016
Decentralized projected Riemannian gradient method for smooth optimization on compact submanifolds
K Deng, J Hu
arXiv preprint arXiv:2304.08241, 2023
152023
Medivista-sam: Zero-shot medical video analysis with spatio-temporal sam adaptation
S Kim, K Kim, J Hu, C Chen, Z Lyu, R Hui, S Kim, Z Liu, A Zhong, X Li, ...
arXiv preprint arXiv:2309.13539, 2023
102023
Riemannian natural gradient methods
J Hu, R Ao, AMC So, M Yang, Z Wen
SIAM Journal on Scientific Computing 46 (1), A204-A231, 2024
82024
Riemannian Smoothing Gradient Type Algorithms for Nonsmooth Optimization Problem on Compact Riemannian Submanifold Embedded in Euclidean Space
Z Peng, W Wu, J Hu, K Deng
Applied Mathematics & Optimization 88 (3), 85, 2023
7*2023
Decentralized weakly convex optimization over the Stiefel manifold
J Wang, J Hu, S Chen, Z Deng, AMC So
arXiv preprint arXiv:2303.17779, 2023
72023
On the local convergence of the semismooth Newton method for composite optimization
J Hu, T Tian, S Pan, Z Wen
arXiv preprint arXiv:2211.01127, 2022
62022
Decentralized Riemannian natural gradient methods with Kronecker-product approximations
J Hu, K Deng, N Li, Q Li
arXiv preprint arXiv:2303.09611, 2023
42023
Nonconvex Federated Learning on Compact Smooth Submanifolds With Heterogeneous Data
J Zhang, J Hu, AMC So, M Johansson
arXiv preprint arXiv:2406.08465, 2024
22024
Composite federated learning with heterogeneous data
J Zhang, J Hu, M Johansson
ICASSP 2024-2024 IEEE International Conference on Acoustics, Speech and …, 2024
22024
Oracle complexity of augmented Lagrangian methods for nonsmooth manifold optimization
K Deng, J Hu, Z Wen
arXiv preprint arXiv:2404.05121, 2024
22024
A projected semismooth Newton method for a class of nonconvex composite programs with strong prox-regularity
J Hu, K Deng, J Wu, Q Li
Journal of Machine Learning Research 25 (56), 1-32, 2024
22024
An augmented lagrangian primal-dual semismooth newton method for multi-block composite optimization
Z Deng, K Deng, J Hu, Z Wen
arXiv preprint arXiv:2312.01273, 2023
22023
Decentralized Douglas-Rachford splitting methods for smooth optimization over compact submanifolds
K Deng, J Hu, H Wang
arXiv preprint arXiv:2311.16399, 2023
22023
Achieving consensus over compact submanifolds
J Hu, J Zhang, K Deng
arXiv preprint arXiv:2306.04769, 2023
22023
A rendszer jelenleg nem tudja elvégezni a műveletet. Próbálkozzon újra később.
Cikkek 1–20