Követés
Rujun Jiang
Cím
Hivatkozott rá
Hivatkozott rá
Év
Simultaneous diagonalization of matrices and its applications in quadratically constrained quadratic programming
R Jiang, D Li
SIAM Journal on Optimization 26 (3), 1649-1668, 2016
422016
Novel reformulations and efficient algorithms for the generalized trust region subproblem
R Jiang, D Li
SIAM Journal on Optimization 29 (2), 1603-1633, 2019
282019
SOCP reformulation for the generalized trust region subproblem via a canonical form of two symmetric matrices
R Jiang, D Li, B Wu
Mathematical Programming 169, 531-563, 2018
262018
Portfolio optimization with nonparametric value at risk: A block coordinate descent method
X Cui, X Sun, S Zhu, R Jiang, D Li
INFORMS Journal on Computing 30 (3), 454-471, 2018
252018
Fast algorithms for stackelberg prediction game with least squares loss
J Wang, H Chen, R Jiang, X Li, Z Li
International Conference on Machine Learning, 10708-10716, 2021
162021
Second order cone constrained convex relaxations for nonconvex quadratically constrained quadratic programming
R Jiang, D Li
Journal of Global Optimization 75, 461-494, 2019
14*2019
Hölderian error bounds and kurdyka-łojasiewicz inequality for the trust region subproblem
R Jiang, X Li
Mathematics of Operations Research 47 (4), 3025-3050, 2022
122022
Complexity results and effective algorithms for worst-case linear optimization under uncertainties
H Luo, X Ding, J Peng, R Jiang, D Li
INFORMS Journal on Computing 33 (1), 180-197, 2021
122021
An accelerated first-order method with complexity analysis for solving cubic regularization subproblems
R Jiang, MC Yue, Z Zhou
Computational Optimization and Applications 79, 471-506, 2021
102021
A linear-time algorithm for generalized trust region subproblems
R Jiang, D Li
SIAM Journal on Optimization 30 (1), 915-932, 2020
102020
Cubic regularization methods with second-order complexity guarantee based on a new subproblem reformulation
RJ Jiang, ZS Zhou, ZR Zhou
Journal of the Operations Research Society of China 10 (3), 471-506, 2022
82022
Solving stackelberg prediction game with least squares loss via spherically constrained least squares reformulation
J Wang, W Huang, R Jiang, X Li, AL Wang
International Conference on Machine Learning, 22665-22679, 2022
82022
LPA-SD: An efficient first-order method for single-group multicast beamforming
R Jiang, H Liu, AMC So
2018 IEEE 19th International Workshop on Signal Processing Advances in …, 2018
62018
A Riemannian proximal Newton method
W Si, PA Absil, W Huang, R Jiang, S Vary
SIAM Journal on Optimization 34 (1), 654-681, 2024
52024
Semidefinite programming based convex relaxation for nonconvex quadratically constrained quadratic programming
R Jiang, D Li
World Congress on Global Optimization, 213-220, 2019
42019
Decision making under cumulative prospect theory: An alternating direction method of multipliers
X Cui, R Jiang, Y Shi, Y Yan
arXiv preprint arXiv:2210.02626, 2022
32022
New notions of simultaneous diagonalizability of quadratic forms with applications to QCQPs
AL Wang, R Jiang
arXiv preprint arXiv:2101.12141, 2021
32021
Exactness Conditions for Semidefinite Programming Relaxations of Generalization of the Extended Trust Region Subproblem
R Jiang, D Li
Mathematics of Operations Research 48 (3), 1235-1253, 2023
22023
Quadratic convex reformulation for quadratic programming with linear on–off constraints
B Wu, D Li, R Jiang
European Journal of Operational Research 274 (3), 824-836, 2019
22019
Riemannian Adaptive Regularized Newton Methods with H\" older Continuous Hessians
C Zhang, R Jiang
arXiv preprint arXiv:2309.04052, 2023
12023
A rendszer jelenleg nem tudja elvégezni a műveletet. Próbálkozzon újra később.
Cikkek 1–20