Scikit-learn: Machine learning in Python F Pedregosa, G Varoquaux, A Gramfort, V Michel, B Thirion, O Grisel, ... https://arxiv.org/abs/1201.0490, 2012 | 106301 | 2012 |
API design for machine learning software: experiences from the scikit-learn project L Buitinck, G Louppe, M Blondel, F Pedregosa, A Mueller, O Grisel, ... arXiv:1309.0238, 2013 | 3903 | 2013 |
Understanding Random Forests: From Theory to Practice G Louppe arXiv preprint arXiv:1407.7502, 2014 | 1439* | 2014 |
Understanding variable importances in forests of randomized trees G Louppe, L Wehenkel, A Sutera, P Geurts Advances in neural information processing systems 26, 2013 | 1436 | 2013 |
The frontier of simulation-based inference K Cranmer, J Brehmer, G Louppe Proceedings of the National Academy of Sciences 117 (48), 30055-30062, 2020 | 1127 | 2020 |
Scikit-learn: Machine learning without learning the machinery G Varoquaux, L Buitinck, G Louppe, O Grisel, F Pedregosa, A Mueller GetMobile: Mobile Computing and Communications 19 (1), 29-33, 2015 | 659 | 2015 |
Machine learning in high energy physics community white paper K Albertsson, P Altoe, D Anderson, M Andrews, JP Araque Espinosa, ... Journal of Physics: Conference Series 1085, 022008, 2018 | 338 | 2018 |
Learning to pivot with adversarial networks G Louppe, M Kagan, K Cranmer Advances in neural information processing systems 30, 2017 | 329 | 2017 |
Robust EEG-based cross-site and cross-protocol classification of states of consciousness DA Engemann, F Raimondo, JR King, B Rohaut, G Louppe, F Faugeras, ... Brain 141 (11), 3179-3192, 2018 | 305 | 2018 |
scikit-optimize/scikit-optimize T Head, MechCoder, G Louppe, I Shcherbatyi Zenodo, 2018 | 277* | 2018 |
Approximating Likelihood Ratios with Calibrated Discriminative Classifiers K Cranmer, J Pavez, G Louppe arXiv:1506.02169, 2016 | 257 | 2016 |
QCD-aware recursive neural networks for jet physics G Louppe, K Cho, C Becot, K Cranmer Journal of High Energy Physics 2019 (1), 1-23, 2019 | 254 | 2019 |
Ensembles on random patches G Louppe, P Geurts Machine Learning and Knowledge Discovery in Databases: European Conference …, 2012 | 239 | 2012 |
Likelihood-free MCMC with Amortized Approximate Ratio Estimators J Hermans, V Begy, G Louppe International Conference on Machine Learning, 2020 | 226* | 2020 |
Constraining effective field theories with machine learning J Brehmer, K Cranmer, G Louppe, J Pavez Physical review letters 121 (11), 111801, 2018 | 215 | 2018 |
Unconstrained monotonic neural networks A Wehenkel, G Louppe Advances in neural information processing systems 32, 2019 | 207 | 2019 |
Collaborative analysis of multi-gigapixel imaging data using Cytomine R Marée, L Rollus, B Stévens, R Hoyoux, G Louppe, R Vandaele, ... Bioinformatics 32 (9), 1395-1401, 2016 | 201 | 2016 |
Mining gold from implicit models to improve likelihood-free inference J Brehmer, G Louppe, J Pavez, K Cranmer Proceedings of the National Academy of Sciences 117 (10), 5242-5249, 2020 | 200 | 2020 |
A guide to constraining effective field theories with machine learning J Brehmer, K Cranmer, G Louppe, J Pavez Physical Review D 98 (5), 052004, 2018 | 194 | 2018 |
Mining for Dark Matter Substructure: Inferring subhalo population properties from strong lenses with machine learning J Brehmer, S Mishra-Sharma, J Hermans, G Louppe, K Cranmer The Astrophysical Journal 886 (1), 49, 2019 | 119 | 2019 |