Follow
Ziyu Su
Ziyu Su
Center for Artificial Intelligence Research, Wake Forest University
Verified email at wakehealth.edu - Homepage
Title
Cited by
Cited by
Year
Attention2majority: Weak multiple instance learning for regenerative kidney grading on whole slide images
Z Su, TE Tavolara, G Carreno-Galeano, SJ Lee, MN Gurcan, MKK Niazi
Medical Image Analysis 79, 102462, 2022
392022
BCR-Net: A deep learning framework to predict breast cancer recurrence from histopathology images
Z Su, MKK Niazi, TE Tavolara, S Niu, GH Tozbikian, R Wesolowski, ...
Plos one 18 (4), e0283562, 2023
172023
One label is all you need: Interpretable AI-enhanced histopathology for oncology
TE Tavolara, Z Su, MN Gurcan, MKK Niazi
Seminars in Cancer Biology, 2023
162023
Attention2Minority: A salient instance inference-based multiple instance learning for classifying small lesions in whole slide images
Z Su, M Rezapour, U Sajjad, MN Gurcan, MKK Niazi
Computers in Biology and Medicine 167 (0010-4825), 107607, 2023
92023
NRK-ABMIL: Subtle Metastatic Deposits Detection for Predicting Lymph Node Metastasis in Breast Cancer Whole-Slide Images
U Sajjad, M Rezapour, Z Su, GH Tozbikian, MN Gurcan, MKK Niazi
Cancers 15 (13), 3428, 2023
82023
Cross-attention-based saliency inference for predicting cancer metastasis on whole slide images
Z Su, M Rezapour, U Sajjad, S Niu, MN Gurcan, MKK Niazi
IEEE Journal of Biomedical and Health Informatics, 2024
32024
Deep-ODX: an efficient deep learning tool to risk stratify breast cancer patients from histopathology images
Z Su, A Rosen, R Wesolowski, G Tozbikian, MKK Niazi, MN Gurcan
Medical Imaging 2024: Digital and Computational Pathology 12933, 34-39, 2024
22024
Predicting obstructive sleep apnea severity from craniofacial images using ensemble machine learning models
Z Su, S Kumar, TE Tavolara, MN Gurcan, S Segal, MKK Niazi
Medical Imaging 2023: Computer-Aided Diagnosis 12465, 644-649, 2023
22023
An interpretable framework for inter-observer agreement measurements in TILs scoring on histopathological breast images: A proof-of-principle study
A Capar, DA Ekinci, M Ertano, MKK Niazi, EB Balaban, I Aloglu, M Dogan, ...
PloS one 19 (12), e0314450, 2024
2024
Computational Pathology for Accurate Prediction of Breast Cancer Recurrence: Development and Validation of a Deep Learning-based Tool
Z Su, Y Guo, R Wesolowski, G Tozbikian, NS O'Connell, M Niazi, ...
arXiv preprint arXiv:2409.15491, 2024
2024
Deep Learning Model for Predicting Lung Adenocarcinoma Recurrence from Whole Slide Images
Z Su, U Afzaal, S Niu, MM de Toro, F Xing, J Ruiz, MN Gurcan, W Li, ...
Cancers 16 (17), 3097, 2024
2024
Adapting Segment Anything Model for Tumor Bud Segmentation on Hematoxylin and Eosin Images of Colorectal Cancer
Z Su, MD Wei Chen, U Sajjad
Archives of Pathology & Laboratory Medicine 148 (9), E183-E183, 2024
2024
Combining frontal and profile view facial images to predict difficult-to-intubate patients using AI
Z Su, TE Tavolara, U Sajjad, MN Gurcan, S Segal, MKK Niazi
Medical Imaging 2024: Computer-Aided Diagnosis 12927, 125-131, 2024
2024
Enhancing colorectal cancer tumor bud detection using deep learning from routine H&E-stained slides
U Sajjad, W Chen, M Rezapour, Z Su, T Tavolara, WL Frankel, ...
Medical Imaging 2024: Digital and Computational Pathology 12933, 199-205, 2024
2024
Adapting SAM to histopathology images for tumor bud segmentation in colorectal cancer
Z Su, W Chen, S Annem, U Sajjad, M Rezapour, WL Frankel, MN Gurcan, ...
Medical Imaging 2024: Digital and Computational Pathology 12933, 64-69, 2024
2024
Few-shot tumor bud segmentation using generative model in colorectal carcinoma
Z Su, W Chen, PJ Leigh, U Sajjad, S Niu, M Rezapour, WL Frankel, ...
Proceedings of SPIE--the International Society for Optical Engineering 12933, 2024
2024
Shamap: Shape-based Manifold Learning
F Fan, Z Su, Y Teng, G Wang
arXiv preprint arXiv:1802.05386, 2018
2018
Automatic Computerized Identification Of Difficult Intubation From Facial Photographs
S Segal, K Niazi, Z Su
Anesth Analg 112 (1), 84-93, 2011
2011
The system can't perform the operation now. Try again later.
Articles 1–18