Follow
Kuzma Khrabrov
Kuzma Khrabrov
Artificial Intelligence Research Institute (AIRI), Moscow, Russia
Verified email at airi.net
Title
Cited by
Cited by
Year
druGAN: an advanced generative adversarial autoencoder model for de novo generation of new molecules with desired molecular properties in silico
A Kadurin, S Nikolenko, K Khrabrov, A Aliper, A Zhavoronkov
Molecular pharmaceutics 14 (9), 3098-3104, 2017
5382017
The cornucopia of meaningful leads: Applying deep adversarial autoencoders for new molecule development in oncology
A Kadurin, A Aliper, A Kazennov, P Mamoshina, Q Vanhaelen, ...
Oncotarget 8 (7), 10883, 2017
3892017
nabladft: Large-scale conformational energy and hamiltonian prediction benchmark and dataset
K Khrabrov, I Shenbin, A Ryabov, A Tsypin, A Telepov, A Alekseev, ...
Physical Chemistry Chemical Physics 24 (42), 25853-25863, 2022
202022
Chemical Language Models Have Problems with Chemistry: A Case Study on Molecule Captioning Task
V Ganeeva, K Khrabrov, A Kadurin, A Savchenko, E Tutubalina
The Second Tiny Papers Track at ICLR 2024, 2024
12024
FREED++: Improving RL Agents for Fragment-Based Molecule Generation by Thorough Reproduction
A Telepov, A Tsypin, K Khrabrov, S Yakukhnov, P Strashnov, P Zhilyaev, ...
Transactions on Machine Learning Research (TMLR), 2023
12023
Gradual Optimization Learning for Conformational Energy Minimization
A Tsypin, L Ugadiarov, K Khrabrov, M Avetisian, A Telepov, E Rumiantsev, ...
arXiv preprint arXiv:2311.06295, 2023
12023
Doping position estimation for FeRh-based alloys
E Rumiantsev, K Khrabrov, A Tsypin, ND Peresypkin, RR Gimaev, ...
Scientific Reports 14 (1), 20612, 2024
2024
DFT: A Universal Quantum Chemistry Dataset of Drug-Like Molecules and a Benchmark for Neural Network Potentials
K Khrabrov, A Ber, A Tsypin, K Ushenin, E Rumiantsev, A Telepov, ...
arXiv preprint arXiv:2406.14347, 2024
2024
The small cage in the Zoo of terminal Fano threefolds.
K Khrabrov
2014
The system can't perform the operation now. Try again later.
Articles 1–9