Numerical inverse Laplace transformation using concentrated matrix exponential distributions G Horváth, I Horváth, SAD Almousa, M Telek Performance Evaluation 137, 102067, 2020 | 90 | 2020 |
Diffusive limits for “true” (or myopic) self-avoiding random walks and self-repellent Brownian polymers in d ≥ 3 I Horváth, B Tóth, B Vető Probability Theory and Related Fields 153 (3), 691-726, 2012 | 29 | 2012 |
High order concentrated matrix-exponential distributions G Horváth, I Horváth, M Telek Stochastic Models 36 (2), 176-192, 2020 | 20 | 2020 |
Local-density dependent Markov processes on graphons with epidemiological applications D Keliger, I Horvath, B Takacs Stochastic Processes and their Applications 148, 324-352, 2022 | 19 | 2022 |
Mean field analysis of join-below-threshold load balancing for resource sharing servers IA Horváth, Z Scully, B Van Houdt Proceedings of the ACM on Measurement and Analysis of Computing Systems 3 (3 …, 2019 | 19 | 2019 |
Cross-correlation based clustering and dimension reduction of multivariate time series A Egri, I Horváth, F Kovács, R Molontay, K Varga 2017 IEEE 21st International Conference on Intelligent Engineering Systems …, 2017 | 16 | 2017 |
Concentrated matrix exponential distributions I Horváth, O Sáfár, M Telek, B Zámbó European Workshop on Performance Engineering, 18-31, 2016 | 14 | 2016 |
An optimal inverse Laplace transform method without positive and negative overshoot–an integral based interpretation I Horváth, Z Talyigás, M Telek Electronic Notes in Theoretical Computer Science 337, 87-104, 2018 | 12 | 2018 |
Mean field for performance models with generally-distributed timed transitions RA Hayden, I Horváth, M Telek Quantitative Evaluation of Systems: 11th International Conference, QEST 2014 …, 2014 | 12 | 2014 |
Extremal P4-stable graphs I Horváth, GY Katona Discrete applied mathematics 159 (16), 1786-1792, 2011 | 9 | 2011 |
A constructive proof of the phase-type characterization theorem I Horváth, M Telek Stochastic Models 31 (2), 316-350, 2015 | 8 | 2015 |
Numerical inverse transformation methods for Z-Transform I Horváth, A Mészáros, M Telek Mathematics 8 (4), 556, 2020 | 7 | 2020 |
On the canonical representation of order 3 discrete phase type distributions I Horváth, J Papp, M Telek Electronic Notes in Theoretical Computer Science 318, 143-158, 2015 | 7 | 2015 |
Relaxed sector condition I Horváth, B Tóth, B Veto arXiv preprint arXiv:1202.5915, 2012 | 7 | 2012 |
Accuracy criterion for mean field approximations of Markov processes on hypergraphs D Keliger, I Horváth Physica A: Statistical Mechanics and its Applications 609, 128370, 2023 | 6 | 2023 |
The resampling M/G/1 non-preemptive LIFO queue and its application to systems with uncertain service time I Horváth, R Razumchik, M Telek Performance Evaluation 134, 102000, 2019 | 6 | 2019 |
Inverse Laplace transform with concentrated matrix-exponential functions G Horváth, I Horváth, M Telek, SAD Almousa, Z Talyigás | 5 | 2020 |
Moment bounds of PH distributions with infinite or finite support based on the steepest increase property QM He, G Horváth, I Horváth, M Telek Advances in Applied Probability 51 (1), 168-183, 2019 | 5 | 2019 |
Mean-field analysis of load balancing principles in large scale systems I Horváth, M Mészáros arXiv preprint arXiv:2307.04360, 2023 | 4 | 2023 |
Numerical inverse Laplace transformation beyond the Abate–Whitt framework I Horváth, A Mészáros, M Telek Journal of Computational and Applied Mathematics 418, 114651, 2023 | 4 | 2023 |