p-Neighborhood for certain class of multivalent functions. Panam F Altuntas, S Owa, M Kamali
Math. J 19 (2), 35-46, 2009
7 2009 On Some Results for Subclass of β-spirallike Functions of Order α S Owa, F Sagsoz, M Kamali
Tamsui Oxford Journal of Information and Mathematical Sciences 28 (1), 79-93, 2012
6 2012 On new subclasses of bi-univalent functions defined by generalized Sălăgean differential operator E Toklu, İ Aktaş, F Sağsöz
Communications Faculty of Sciences University of Ankara Series A1 …, 2019
4 2019 Some properties of subclasses of multivalent functions M Kamali, F Sağsöz
Abstract and Applied Analysis 2011 (1), 361647, 2011
4 2011 On certain coefficient bounds for multivalent functions F Altuntas, M Kamali
Annales Universitatis Mariae Curie-Sklodowska 63 (1), 1, 2009
4 2009 -Neighborhood for some classes of multivalent functionsF Sağsöz, M Kamali
Journal of Inequalities and Applications 2013, 1-9, 2013
2 2013 On neighborhoods of two new subclasses of multivalent functions with negative coefficients F Sağsöz, M Kamali̇
Computers & Mathematics with Applications 62 (4), 1772-1779, 2011
2 2011 On univalence of integral operators F Sağsöz
Communications Faculty of Sciences University of Ankara Series A1 …, 2018
1 2018 Upper bounds for Fekete–Szegö functional F Sağsöz, H Arikan, H Orhan
Boletín de la Sociedad Matemática Mexicana 29 (3), 80, 2023
2023 Coefficient inequalities for new subclasses of bi-univalent functions defined by using the function F Sağsöz, H Orhan
Asian-European Journal of Mathematics 15 (09), 2250160, 2022
2022 of multivalent functions F Sagsöz, M Kamali
2013 Multivalent fonksiyonların bazı alt sınıfları F Sağsöz
Fen Bilimleri Enstitüsü, 0