Dispersion modeling of air pollutants in the atmosphere: a review Á Leelőssy, F Molnár, F Izsák, Á Havasi, I Lagzi, R Mészáros Open Geosciences 6 (3), 257-278, 2014 | 353 | 2014 |
Pattern formation and self-organization in a simple precipitation system A Volford, F Izsák, M Ripszám, I Lagzi Langmuir 23 (3), 961-964, 2007 | 67 | 2007 |
Optimal penalty parameters for symmetric discontinuous Galerkin discretisations of the time-harmonic Maxwell equations D Sármány, F Izsák, JJW van der Vegt Journal of scientific computing 44, 219-254, 2010 | 56 | 2010 |
Simulation of reaction–diffusion processes in three dimensions using CUDA F Molnár Jr, F Izsák, R Mészáros, I Lagzi Chemometrics and Intelligent Laboratory Systems 108 (1), 76-85, 2011 | 43 | 2011 |
Design of equidistant and revert type precipitation patterns in reaction–diffusion systems F Molnar Jr, F Izsák, I Lagzi Physical Chemistry Chemical Physics 10 (17), 2368-2373, 2008 | 43 | 2008 |
Implicit a posteriori error estimates for the Maxwell equations F Izsák, D Harutyunyan, J van der Vegt Mathematics of computation 77 (263), 1355-1386, 2008 | 38 | 2008 |
Adaptive finite element techniques for the Maxwell equations using implicit a posteriori error estimates D Harutyunyan, F Izsák, JJW van der Vegt, MA Botchev Computer methods in applied mechanics and engineering 197 (17-18), 1620-1638, 2008 | 30 | 2008 |
A new universal law for the Liesegang pattern formation F Izsák, I Lagzi The Journal of chemical physics 122 (18), 2005 | 27 | 2005 |
A finite difference method for fractional diffusion equations with Neumann boundary conditions BJ Szekeres, F Izsák Open Mathematics 13 (1), 000010151520150056, 2015 | 26 | 2015 |
Maximum likelihood estimation for constrained parameters of multinomial distributions—Application to Zipf–Mandelbrot models F Izsák Computational statistics & data analysis 51 (3), 1575-1583, 2006 | 26 | 2006 |
Finite difference approximation of space-fractional diffusion problems: the matrix transformation method BJ Szekeres, F Izsák Computers & Mathematics with Applications 73 (2), 261-269, 2017 | 24 | 2017 |
Stochastic description of precipitate pattern formation in an electric field I Lagzi, F Izsák Physical Chemistry Chemical Physics 5 (19), 4144-4148, 2003 | 24 | 2003 |
Models of space-fractional diffusion: a critical review F Izsák, BJ Szekeres Applied Mathematics Letters 71, 38-43, 2017 | 23 | 2017 |
Finite element approximation of fractional order elliptic boundary value problems BJ Szekeres, F Izsák Journal of computational and applied mathematics 292, 553-561, 2016 | 18 | 2016 |
Transition of Liesegang precipitation systems: simulations with an adaptive grid PDE method PA Zegeling, I Lagzi, F Izsák Communications in Computational Physics 10 (4), 867-881, 2011 | 16 | 2011 |
Systematic front distortion and presence of consecutive fronts in a precipitation system A Volford, F Izsak, M Ripszam, I Lagzi The Journal of Physical Chemistry B 110 (10), 4535-4537, 2006 | 16 | 2006 |
Simulation of Liesegang pattern formation using a discrete stochastic model F Izsák, I Lagzi Chemical physics letters 371 (3-4), 321-326, 2003 | 16 | 2003 |
Simulation of a crossover from the precipitation wave to moving Liesegang pattern formation F Izsák, I Lagzi The Journal of Physical Chemistry A 109 (5), 730-733, 2005 | 15 | 2005 |
The Liesegang eyes phenomenon M Ripszám, Á Nagy, A Volford, F Izsák, I Lagzi Chemical physics letters 414 (4-6), 384-388, 2005 | 13 | 2005 |
Stochastic cellular automata modeling of excitable systems T Szakály, I Lagzi, F Izsák, L Roszol, A Volford Central European Journal of Physics 5, 471-486, 2007 | 12 | 2007 |