Weak supervision and other non-standard classification problems: a taxonomy J Hernández-González, I Inza, JA Lozano Pattern Recognition Letters 69, 49-55, 2016 | 131 | 2016 |
Learning Bayesian network classifiers from label proportions J Hernández-González, I Inza, JA Lozano Pattern Recognition 46 (12), 3425-3440, 2013 | 93 | 2013 |
Fitting the data from embryo implantation prediction: Learning from label proportions J Hernández-González, I Inza, L Crisol-Ortíz, MA Guembe, MJ Iñarra, ... Statistical methods in medical research 27 (4), 1056-1066, 2018 | 48 | 2018 |
Learning to classify software defects from crowds: a novel approach J Hernández-González, D Rodriguez, I Inza, R Harrison, JA Lozano Applied Soft Computing 62, 579-591, 2018 | 38 | 2018 |
Machine and deep learning for longitudinal biomedical data: a review of methods and applications A Cascarano, J Mur-Petit, J Hernandez-Gonzalez, M Camacho, ... Artificial Intelligence Review 56 (Suppl 2), 1711-1771, 2023 | 26 | 2023 |
A note on the behavior of majority voting in multi-class domains with biased annotators J Hernandez-Gonzalez, I Inza, JA Lozano IEEE Transactions on Knowledge and Data Engineering 31 (1), 195-200, 2018 | 20 | 2018 |
Beach litter forecasting on the south-eastern coast of the Bay of Biscay: A bayesian networks approach I Granado, OC Basurko, A Rubio, L Ferrer, J Hernández-González, ... Continental Shelf Research 180, 14-23, 2019 | 19 | 2019 |
A conceptual probabilistic framework for annotation aggregation of citizen science data J Cerquides, MO Mülâyim, J Hernández-González, A Ravi Shankar, ... Mathematics 9 (8), 875, 2021 | 18 | 2021 |
Fairness and bias correction in machine learning for depression prediction across four study populations VN Dang, A Cascarano, RH Mulder, C Cecil, MA Zuluaga, ... Scientific Reports 14 (1), 7848, 2024 | 12* | 2024 |
Multidimensional learning from crowds: Usefulness and application of expertise detection J Hernández‐González, I Inza, JA Lozano International Journal of Intelligent Systems 30 (3), 326-354, 2015 | 12 | 2015 |
Learning naive Bayes models for multiple-instance learning with label proportions J Hernández, I Inza Advances in Artificial Intelligence: 14th Conference of the Spanish …, 2011 | 12 | 2011 |
Learning from proportions of positive and unlabeled examples J Hernández‐González, I Inza, JA Lozano International Journal of Intelligent Systems 32 (2), 109-133, 2017 | 11 | 2017 |
Predicting ICU Mortality in Acute Respiratory Distress Syndrome Patients Using Machine Learning: The Predicting Outcome and STratifiCation of severity in ARDS (POSTCARDS) Study J Villar, JM González-Martín, J Hernández-González, MA Armengol, ... Critical care medicine, 2023 | 8 | 2023 |
Aggregated outputs by linear models: an application on marine litter beaching prediction J Hernández-González, I Inza, I Granado, OC Basurko, JA Fernandes, ... Information Sciences 481, 381-393, 2019 | 8 | 2019 |
Merging knowledge bases in different languages J Hernández-González, ER Hruschka Jr, T Mitchell Proceedings of TextGraphs-11: the Workshop on Graph-based Methods for …, 2017 | 7 | 2017 |
Similarity networks for heterogeneous data LA Belanche Muñoz, J Hernández González ESANN 2012: the 20th European Symposium on Artificial Neural Networks …, 2012 | 7 | 2012 |
A novel weakly supervised problem: Learning from positive-unlabeled proportions J Hernández-González, I Inza, JA Lozano Advances in Artificial Intelligence: 16th Conference of the Spanish …, 2015 | 6 | 2015 |
A robust solution to variational importance sampling of minimum variance J Hernández-González, J Cerquides Entropy 22 (12), 1405, 2020 | 5 | 2020 |
Two datasets of defect reports labeled by a crowd of annotators of unknown reliability J Hernández-González, D Rodriguez, I Inza, R Harrison, JA Lozano Data in Brief 18, 840-845, 2018 | 5 | 2018 |
On the relative value of weak information of supervision for learning generative models: An empirical study J Hernández-González, A Pérez International Journal of Approximate Reasoning 150, 258-272, 2022 | 4 | 2022 |