Követés
Shaun M Kandathil
Shaun M Kandathil
E-mail megerősítve itt: ucl.ac.uk
Cím
Hivatkozott rá
Hivatkozott rá
Év
A review of the chemistry and pharmacology of the date fruits (Phoenix dactylifera L.)
MS Baliga, BRV Baliga, SM Kandathil, HP Bhat, PK Vayalil
Food research international 44 (7), 1812-1822, 2011
5482011
High precision in protein contact prediction using fully convolutional neural networks and minimal sequence features
DT Jones, SM Kandathil
Bioinformatics 34 (19), 3308-3315, 2018
1562018
Deep learning extends de novo protein modelling coverage of genomes using iteratively predicted structural constraints
JG Greener, SM Kandathil, DT Jones
Nature communications 10 (1), 1-13, 2019
1232019
Prediction of interresidue contacts with DeepMetaPSICOV in CASP13
SM Kandathil, JG Greener, DT Jones
Proteins: Structure, Function, and Bioinformatics 87 (12), 1092-1099, 2019
872019
A guide to machine learning for biologists
JG Greener, SM Kandathil, L Moffat, DT Jones
Nature Reviews Molecular Cell Biology 23 (1), 40-55, 2022
722022
Accuracy and tractability of a kriging model of intramolecular polarizable multipolar electrostatics and its application to histidine
SM Kandathil, TL Fletcher, Y Yuan, J Knowles, PLA Popelier
Journal of computational chemistry 34 (21), 1850–1861, 2013
552013
Recent developments in deep learning applied to protein structure prediction
SM Kandathil, JG Greener, DT Jones
Proteins: Structure, Function, and Bioinformatics 87 (12), 1179-1189, 2019
462019
Generating, maintaining, and exploiting diversity in a memetic algorithm for protein structure prediction
M Garza-Fabre, SM Kandathil, J Handl, J Knowles, SC Lovell
Evolutionary computation 24 (4), 577-607, 2016
332016
The prediction of atomic kinetic energies from coordinates of surrounding atoms using kriging machine learning
TL Fletcher, SM Kandathil, PLA Popelier
Theoretical Chemistry Accounts 133 (7), 1-10, 2014
292014
Toward a detailed understanding of search trajectories in fragment assembly approaches to protein structure prediction
SM Kandathil, J Handl, SC Lovell
Proteins: Structure, Function, and Bioinformatics 84, 411–426, 2016
192016
Accurate prediction of polarised high order electrostatic interactions for hydrogen bonded complexes using the machine learning method kriging
TJ Hughes, SM Kandathil, PLA Popelier
Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 136, 32-41, 2015
152015
Deep learning-based prediction of protein structure using learned representations of multiple sequence alignments
SM Kandathil, JG Greener, AM Lau, DT Jones
Biorxiv, 2020.11. 27.401232, 2020
132020
Improved fragment-based protein structure prediction by redesign of search heuristics
SM Kandathil, M Garza-Fabre, J Handl, SC Lovell
Scientific reports 8 (1), 1-14, 2018
112018
Proton tunnelling and promoting vibrations during the oxidation of ascorbate by ferricyanide?
SM Kandathil, MD Driscoll, RV Dunn, NS Scrutton, S Hay
Physical Chemistry Chemical Physics 16 (6), 2256-2259, 2014
112014
Adaptive HIV-1 evolutionary trajectories are constrained by protein stability
AS Olabode, SM Kandathil, SC Lovell, DL Robertson
Virus evolution 3 (2), 2017
72017
Design in the dark: Learning deep generative models for de novo protein design
L Moffat, SM Kandathil, DT Jones
bioRxiv, 2022
52022
Uncommon mutational profiles of metastatic colorectal cancer detected during routine genotyping using next generation sequencing
C Franczak, SM Kandathil, P Gilson, M Husson, M Rouyer, J Demange, ...
Scientific Reports 9 (1), 1-8, 2019
52019
Ultrafast end-to-end protein structure prediction enables high-throughput exploration of uncharacterized proteins
SM Kandathil, JG Greener, AM Lau, DT Jones
Proceedings of the National Academy of Sciences 119 (4), e2113348119, 2022
42022
Ultrafast end-to-end protein structure prediction enables high-throughput exploration of uncharacterised proteins
SM Kandathil, JG Greener, AM Lau, DT Jones
bioRxiv, 2020.11. 27.401232, 2021
32021
Near-complete protein structural modelling of the minimal genome
JG Greener, N Desai, SM Kandathil, DT Jones
arXiv preprint arXiv:2007.06623, 2020
32020
A rendszer jelenleg nem tudja elvégezni a műveletet. Próbálkozzon újra később.
Cikkek 1–20