Learn to improve: A novel deep reinforcement learning approach for beyond 5G network slicing A Rkhami, Y Hadjadj-Aoul, A Outtagarts 2021 IEEE 18th Annual Consumer Communications & Networking Conference (CCNC …, 2021 | 30 | 2021 |
On the use of graph neural networks for virtual network embedding A Rkhami, TAQ Pham, Y Hadjadj-Aoul, A Outtagarts, G Rubino 2020 International Symposium on Networks, Computers and Communications …, 2020 | 26 | 2020 |
A robust monte-carlo-based deep learning strategy for virtual network embedding G Dandachi, A Rkhami, Y Hadjadj-Aoul, A Outtagarts 2022 IEEE 47th Conference on Local Computer Networks (LCN), 34-41, 2022 | 6 | 2022 |
On the use of machine learning and network tomography for network slices monitoring A Rkhami, Y Hadjadj-Aoul, G Rubino, A Outtagarts 2021 IEEE 22nd International Conference on High Performance Switching and …, 2021 | 6 | 2021 |
MonGNN: A neuroevolutionary-based solution for 5G network slices monitoring A Rkhami, Y Hadjadj-Aoul, G Rubino, A Outtagarts 2021 IEEE 46th Conference on Local Computer Networks (LCN), 185-192, 2021 | 3 | 2021 |
From servies placement to services monitoring in 5G and post-5G networks A Rkhami Université de Rennes 1, 2021 | | 2021 |