Reducing communication in federated learning via efficient client sampling M Ribero, H Vikalo Pattern Recognition 148, 110122, 2024 | 126* | 2024 |
MmWave vehicular beam selection with situational awareness using machine learning Y Wang, A Klautau, M Ribero, ACK Soong, RW Heath IEEE Access 7, 87479-87493, 2019 | 109 | 2019 |
(Nearly) Dimension Independent Private ERM with AdaGrad Rates\{via Publicly Estimated Subspaces P Kairouz, MR Diaz, K Rush, A Thakurta Conference on Learning Theory, 2717-2746, 2021 | 43* | 2021 |
Federated learning under intermittent client availability and time-varying communication constraints M Ribero, H Vikalo, G De Veciana IEEE Journal of Selected Topics in Signal Processing 17 (1), 98-111, 2022 | 40 | 2022 |
Mmwave vehicular beam training with situational awareness by machine learning Y Wang, A Klautau, M Ribero, M Narasimha, RW Heath 2018 IEEE Globecom Workshops (GC Wkshps), 1-6, 2018 | 36 | 2018 |
Federating recommendations using differentially private prototypes M Ribero, J Henderson, S Williamson, H Vikalo Pattern Recognition 129, 108746, 2022 | 35 | 2022 |
Deep learning propagation models over irregular terrain M Ribero, RW Heath, H Vikalo, D Chizhik, RA Valenzuela ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and …, 2019 | 29 | 2019 |
A comparison of different crime prediction models for Bogotá F Barreras, C Díaz, Á Riascos, M Ribero Documentos CEDE 34, 2016 | 14 | 2016 |
Easy differentially private linear regression K Amin, M Joseph, M Ribero, S Vassilvitskii arXiv preprint arXiv:2208.07353, 2022 | 13 | 2022 |
A Joint Exponential Mechanism For Differentially Private Top- J Gillenwater, M Joseph, A Munoz, MR Diaz International Conference on Machine Learning, 7570-7582, 2022 | 12 | 2022 |
Comparación de diferentes modelos para la predicción del crimen en bogotá F Barreras, C Díaz, ÁJ Riascos, M Ribero Economía y seguridad en el posconflicto, 209, 2018 | 11 | 2018 |
Una comparación de diferentes modelos para la predicción del crimen en bogotá (a comparison of different crime prediction models for bogotá) F Barreras, C Diaz, A Riascos, M Ribero Documento CEDE, 2016 | 3 | 2016 |
DP-Auditorium: A Large Scale Library for Auditing Differential Privacy W Kong, AM Medina, M Ribero, U Syed 2024 IEEE Symposium on Security and Privacy (SP), 219-219, 2024 | 1 | 2024 |
DP-SGD for non-decomposable objective functions W Kong, AM Medina, M Ribero arXiv preprint arXiv:2310.03104, 2023 | 1 | 2023 |
R\'enyiTester: A Variational Approach to Testing Differential Privacy W Kong, AM Medina, M Ribero arXiv preprint arXiv:2307.05608, 2023 | 1 | 2023 |
A joint exponential mechanism for differentially private top-k set M Joseph, J Gillenwater, M Ribero NeurIPS 2021 Workshop Privacy in Machine Learning, 2021 | 1 | 2021 |
Improving transparency of the Colombian Peace Treaty with NLP F Barreras, M Ribero, F Suárez Quantil Documentos de Trabajo, 2017 | 1 | 2017 |
Privately Counting Partially Ordered Data M Joseph, M Ribero, A Yu arXiv preprint arXiv:2410.06881, 2024 | | 2024 |
Federated Learning at Scale: Addressing Client Intermittency and Resource Constraints M Ribero, H Vikalo, G de Veciana IEEE Journal of Selected Topics in Signal Processing, 2024 | | 2024 |
Privacy of the last iterate in cyclically-sampled DP-SGD on nonconvex composite losses W Kong, M Ribero arXiv preprint arXiv:2407.05237, 2024 | | 2024 |